Abstract

Retinoic acid (RA) has been detected in the regenerating limb of the axolotl, and exogenous RA can proximalize, posteriorize, and ventralize blastemal cells. Thus, RA may be an endogenous regulatory factor during limb regeneration. We have investigated whether endogenous retinoids are essential for patterning during axolotl (Ambystoma mexicanum) limb regeneration by using retinoid antagonists that bind to specific RAR (retinoic acid receptor) or RXR (retinoid X receptor) retinoid receptor subtypes. Retinoid antagonists (Ro41-5253, Ro61-8431, LE135, and LE540) were administered to regenerating limbs using implanted silastin blocks loaded with each antagonist. The skeletal pattern of regenerated limbs treated with Ro41-5253 or Ro61-8431 differed only slightly from control limbs. Treatment with LE135 inhibited limb regeneration, while treatment with LE540 allowed relatively normal limb regeneration. When LE135 and LE540 were implanted together, regeneration was not completely inhibited and a hand-like process regenerated. These results demonstrate that interfering with retinoid receptors can modify pattern in the regenerating limb indicating that endogenous retinoids are important during patterning of the regenerating limb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call