Abstract
Retinoic acid (RA) has profound effects on cell proliferation and differentiation both in vitro and in vivo. Many human cell lines are known to be sensitive to the growth-inhibitory action of RA. We analyzed established human solid tumor-derived cell lines for their RA sensitivity. Growth inhibition by RA in monolayer was examined by [3H]thymidine incorporation and cell proliferation. Here we report that 11 widely used human cell lines were RA resistant. The majority are carcinoma derived (A-431, BT-20, C-41, ACHN, HCT116, 293, A549, and PA-1); two are sarcoma derived (Saos-2 and A673); and one is a melanoma cell line (A-375). Since nuclear retinoid receptors are implicated in the biological effects of RA, we examined the expression of retinoic acid receptors (RARs) RAR alpha, RAR beta, RAR gamma, and the retinoid X receptors (RXRs) RXR alpha, RXR beta, and RXR gamma in the RA-resistant cell lines by northern blotting and by RNase protection analysis for RAR beta. RAR alpha transcripts were constitutively expressed in all cell lines. By contrast, RAR beta was expressed in only seven RA-resistant cell lines (Saos-2, ACHN, 293, A549, A-375, A673, and PA-1), and its level was enhanced by RA in some cases. In most cell lines, RAR gamma expression was low and was not affected by RA. The RXR genes showed a very distinct expression pattern in the group of selected cell lines. In general, RXR alpha was the most abundantly expressed subtype, RXR beta was expressed at low levels, and RXR gamma could not be detected. In none of the RA-resistant cell lines was RXR expression modulated by RA. The results presented here indicate that the resistance of these human tumor cell lines to RA cannot be simply correlated with expression of RAR or RXR or both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.