Abstract

The vitamin A (VA) metabolite retinoic acid (RA) affects the properties of T cells and dendritic cells (DCs). In VA-deficient mice, we observed that mesenteric lymph node (MLN)-DCs induce a distinct inflammatory T helper type 2 (Th2)-cell subset that particularly produces high levels of interleukin (IL)-13 and tumor necrosis factor-α (TNF-α). This subset expressed homing receptors for skin and inflammatory sites, and was mainly induced by B220(-)CD8α(-)CD11b(+)CD103(-) MLN-DCs in an IL-6- and OX40 ligand-dependent manner, whereas RA inhibited this induction. The corresponding MLN-DC subset of VA-sufficient mice induced a similar T-cell subset in the presence of RA receptor antagonists. IL-6 induced this subset differentiation from naive CD4(+) T cells upon activation with antibodies against CD3 and CD28. Transforming growth factor-β inhibited this induction, and reciprocally enhanced Th17 induction. Treatment with an agonistic anti-OX40 antibody and normal MLN-DCs enhanced the induction of general inflammatory Th2 cells. In VA-deficient mice, proximal colon epithelial cells produced TNF-α that may have enhanced OX40 ligand expression in MLN-DCs. The repeated oral administrations of a T cell-dependent antigen primed VA-deficient mice for IL-13-dependent strong immunoglobulin G1 (IgG1) responses and IgE responses that caused skin allergy. These results suggest that RA inhibits allergic responses to oral antigens by preventing MLN-DCs from inducing IL-13-producing inflammatory Th2 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.