Abstract

Neural cell markers have been used to examine the effect of retinoic acid (RA) on the development of the central nervous system (CNS) of Xenopus embryos. RA treatment of neurula stage embryos resulted in a concentration-dependent perturbation of anterior CNS development leading to a reduction in the size of the forebrain, midbrain and hindbrain. In addition the overt segmental organization of the hindbrain was abolished by high concentrations of RA. The regional expression of two cell-specific markers, the homeobox protein Xhox3 and the neurotransmitter serotonin was also examined in embryos exposed to RA. Treatment with RA caused a concentration-dependent change in the pattern of expression of Xhox3 and serotonin and resulted in the ectopic appearance of immunoreactive neurons in anterior regions of the CNS, including the forebrain. Collectively, our results extend previous studies by showing that RA treatment of embryos at the neurula stage inhibits the development of anterior regions of the CNS while promoting the differentiation of more posterior cell types. The relevance of these findings to the possible role of endogenous retinoids in the determination of neural cell fate and axial patterning is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.