Abstract

PC12 cells are known to undergo programmed cell death (apoptosis) when they are deprived of serum. Nerve growth factor (NGF) rescues PC12 cells from serum deprivation-induced apoptosis. In the present study, we examined the effects of retinoic acid (RA), a classic morphogen, on apoptosis in PC12 cells after serum deprivation and NGF-mediated rescue. In naive PC12 cells, all trans-RA treatment induced cell death in the presence of NGF. RA also abolished the protective effects of dibutyryl cyclic AMP or insulin under serum-free conditions. The death process was accompanied by nuclear condensation and DNA fragmentation, typical of apoptosis. In addition, RA also increased the extent of apoptosis in PC12 cells after serum deprivation. Cycloheximide, an inhibitor of protein synthesis, did not abolish the effects of RA on serum-deprived PC12 cells. RA also decreased thymidine incorporation and proliferation in NGF-treated PC12 cells. Furthermore, although the total DNA binding activity of the AP-1 transcription factor was not changed after RA treatment, RA decreased a specific AP-1 transcriptional activity. It is surprising that differentiated PC12 cells resisted the toxic effects of RA. These data suggest that RA might function as an endogenous inducer of apoptosis during neural differentiation by a mechanism distinct from that of serum deprivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call