Abstract
The addition of retinoic acid to cultures of HeLa-S3 cells caused a reduction in cell proliferation rate which became apparent after 72 h and was linearly dependent on retinoic acid concentration in the range 10 −9–10 −5 M. After 72 h of exposure to retinoic acid, the cells assumed a flattened appearance and no longer formed multilayers. These changes were reversed within 48 h after removal of retinoic acid from the medium. Structural analogs of retinoic acid with a free COOH group at C-15 were usually more potent in growth inhibition than compounds with an alcohol, aldehyde, ether or ester group. A cellular retinoic acid-binding protein was detected in cell homogenates, and the binding of [ 3H]retinoic acid to the binding protein was inhibited by most, but not all, analogs possessing a free terminal COOH group. For example, the 4-oxo analog of retinoic acid, while capable of inhibiting cellular proliferation, failed to bind to the retinoic acid-binding protein. Analysis of cell surface and cellular glycoproteins by lactoperoxidase-catalysed 125I iodination and by metabolic labeling with [ 3H]glucosamine revealed that a 190000 D glycoprotein which was labeled by both methods and a 230000 D glycoprotein which was labeled only with [ 3H]glucosamine were labeled more intensely in retinoic acid-treated cells compared with untreated cells. The electrophoretic mobility of the 230000 D glycoprotein could be modified by treatment of intact cells with either neuraminidase or proteolytic enzymes, suggesting that this glycoprotein is also exposed on the cell surface. The cell surface alterations were detected much earlier than the onset of growth inhibition and appeared as early as 24 h after exposure to retinoic acid. The possible relationship between retinoic acid-induced changes in cell membrane structure, cell morphology, and cell proliferation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.