Abstract

Cellular retinoic acid-binding protein 2 (CRABP2) delivers all-trans retinoic acid (atRA) to retinoic acid receptors (RARs), allowing for the activation of specific gene transcription. The structural similarities between free and atRA-bound CRABP2 raise the questions of how atRA binding occurs and how the atRA:CRABP2 complex is recognized by downstream binding partners. Thus, to gain insights into these questions, we conducted a detailed atRA-CRABP2 interaction study using nuclear magnetic resonance spectroscopy. The data showed that free CRABP2 displays widespread intermediate-time scale dynamics that is effectively suppressed upon atRA binding. This effect is mirrored by the fast-time scale dynamics of CRABP2. Unexpectedly, CRABP2 rigidification in response to atRA binding leads to the stabilization of a homodimerization interface, which encompasses residues located on helix α2 and the βC-βD loop as well as residues on strands βI-βA and the βH-βI loop. Critically, this rigidification also affects CRABP2's nuclear localization signal and RAR-binding motif, suggesting that the loss of conformational entropy upon atRA binding may be the key for the diverse cellular functions of CRABP2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call