Abstract

The amplitude and the phase of the simultaneously recorded steady-state pattern electroretinogram (PERG) and visual evoked potential (VEP) were evaluated in humans as a function of the vertical diameter (D) of unidimensional Gabor stimuli. In the other dimension, parallel to the horizontal gratings, the patterns all had constant diameter (see Methods and Materials). Spatial frequencies (SFs) of 1 cycle per degree (cpd) and 5.3 cpd were counterphase modulated at a rate of 6.8 Hz. After off-line artifact rejection, the response was subject to Fast Fourier Transformation (FFT). Amplitude and phase of the first and second harmonics of both ERG and VEP were displayed for each SF and stimulus diameter. Both ERG and VEP amplitude were found to increase as a function of D. Using trend analysis we found that ERG amplitude increased linearly as a function of D. VEP amplitude was found to be both linear and cubic, as a function of D. We calculated the ratio of VEP amplitude and ERG amplitude at each D and termed it retinocortical gain (G). G normalized to stimulus area was high for small D and decreased with D independently of SF. Unity gain occurred at stimulus sizes of 6 degrees to 7 degrees. ERG phase was found to be more negative at 5.3 cpd than at 1 cpd. Although no significant difference was found between VEP phases at the two SFs tested, neither ERG nor VEP phase changed as a function of D. The results suggest that retinocortical gain is highest for the foveally centered low spatial frequency small patch Gabors. The results provide support for the notion of the "foveal window" in human vision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.