Abstract

Our previous studies have shown that the cell proliferation rate, mRNA levels of p450scc, p450c17, and 3betaHSD, and secretion of cortisol were significantly increased in human adrenocortical cells stably transfected with mutated K-ras expression plasmid "pK568MRSV" after being inducted with IPTG. In addition, the increased level was a time-dependent manner. However, the levels of p450, p450scc, p450c17, 3betaHSD, cortisol, and cell proliferation rate were inhibited by a MEK phospholation inhibitor, PD098059. The above results prove that mutated K-ras oncogene is able to regulate tumorigenesis and steroidogenesis through a Ras-RAF-MEK-MAPK signal transduction pathway. The aim of this study was to investigate regulated factors in this pathway and also examine whether the other signal transduction pathways or other moles involved in tumorigenesis or steroidogenesis. In the first year, we analyzed gene profiles of mutant K-ras-transfected adrenocortical cells by DNA microarray to determine the gene expression related to cell cycle, signal transduction, apoptosis, tumorigenesis, steroidogenesis, and other expressed sequence tag. After being affected by the K-ras mutant, gene expression was significantly increased in some upregulated genes. Human zinc-finger protein 22 increased by 28.5 times, Osteopontin increased by 5.8 times, LIM domain Kinase 2 (LIMK2) increased by 3.3 times, Homo sapiens dual-specificity tyrosine-(Y)-phosphorylation regulated Kinase 2 (DYRK2) increased by 2.2 times, and human syntaxin 3 increased by two times. On the other hand, significant decreases in gene expression were also observed in some downregulated genes. Retinoblastoma binding protein 1 (RBBP1) decreased by four times, Homo sapiens craniofacial development protein 1 (CFDP1) decreased by 2.4 times, DAP Kinase-related apoptosis-inducing protein Kinase 1 (DRAK1) decreased by 2.3 times, SKI-interacting protein (SKIP) decreased by 2.2 times, and human poly(A)-Binding protein (PABP) decreased by 2.1 times. In all significant differentially expressed genes, preliminary analysis by bioinformatics revealed that after induced K-ras mutant expression by isopropyl thiogalctoside (IPTG), the downregulation of RBBP1 gene was most correlated to cell proliferation. RBBP1 can bind with RB/E2F to form a mSIN3-HDAC complex, which induces cell cycle arrest in the G1/G0 stage by repressing transcription of E2F-regulated genes. The result of a Northern blot showed that RBBP1 were inhibited after an induction of IPTG for 36 h. Another Northern blot analysis proved that mRNA levels of cyclin D1 and c-myc increased in proportion to K-ras expression. Finally, Western blot was carried out, and the results showed that phosphorylated pRB also increased. Taken together, we infer that the mutant K-ras oncogene promoted the cells to proceed to the G1/S stage by the inhibiting the formation of RB/RBBP1-dependent repressor complex from binding with the SIN3-HDAC complex, which resulted in the acetylation of histone to active transcription of E2F-regulated genes. However, the roles of the other differentially expressed genes involved in cell proliferation, cell morphologic change, tumorigenesis, or steroidogenesis still need further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.