Abstract

Environmentally induced stress plays a significant role in retinal degeneration and blindness both in animals and in humans. Among such sources of stress, phototoxicity is well studied and has been shown to lead to photoreceptor-specific loss in a number of species. However, the vast majority of studies have been conducted in nocturnal, albino rod-dominant rat and mouse strains, and the pertinence of such findings to human pathology and cone loss is debatable. The authors examined retinal vulnerability to damage in the diurnal murid rodent Arvicanthis ansorgei, a pigmented species with a large number of cones. The authors used established protocols for exposing animals to a wide range of lighting conditions (variable intensity, duration, spectrum, previous light history, and time of exposure) and injecting N-methyl-N-nitrosourea (MNU); each procedure is reported to produce rapid and complete photoreceptor-specific damage. Animals then underwent electroretinography to record rod and cone function and were subsequently euthanized and used for immunohistochemical analysis of retinal structure and quantification of free fatty acids. These standard regimens produced no detectable detrimental effects on A. ansorgei retinal phenotype, function, or structure. Partial retinal damage in A. ansorgei was induced by very intense blue light or elevated doses of MNU. This resistance was not attributable to differences in lipid composition (specifically, docosahexaenoic acid) between A. ansorgei and susceptible strains of mice and rats. The retina of this species exhibits exceptionally high resistance to damage from light and toxins such as MNU.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call