Abstract

Automated segmentation of retinal vessels plays a pivotal role in early diagnosis of ophthalmic disorders. In this paper, a blood vessel segmentation algorithm using an enhanced fuzzy min-max neural network supervised classifier is proposed. The input to the network is an optimal 11-D feature vector which consists of spatial as well as frequency domain features extracted from each pixel of a fundus image. The essence of the method is its hyperbox classifier which performs online learning and gives binary output without any need of post-processing. The method is tested on publicly available databases DRIVE and STARE. The results are compared with the existing methods in the literature. The proposed method exhibits efficient performance and can be implemented in computer aided screening and diagnosis of retinal diseases. The method attains an average accuracy, sensitivity and specificity of 95.73%, 74.75% and 97.81% on DRIVE database and 95.51%, 74.65% and 97.11% on STARE database, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call