Abstract

Diabetic retinopathy (DR) is the major ophthalmic pathological cause for loss of eye sight due to changes in blood vessel structure. The retinal blood vessel morphology helps to identify the successive stages of a number of sight threatening diseases and thereby paves a way to classify its severity. This paper presents an automated retinal vessel segmentation technique using neural network, which can be used in computer analysis of retinal images, e.g., in automated screening for diabetic retinopathy. Furthermore, the algorithm proposed in this paper can be used for the analysis of vascular structures of the human retina. Changes in retinal vasculature are one of the main symptoms of diseases like hypertension and diabetes mellitus. Since the size of typical retinal vessel is only a few pixels wide, it is critical to obtain precise measurements of vascular width using automated retinal image analysis. This method segments each image pixel as vessel or nonvessel, which in turn, used for automatic recognition of the vasculature in retinal images. Retinal blood vessels are identified by means of a multilayer perceptron neural network, for which the inputs are derived from the Gabor and moment invariants-based features. Back propagation algorithm, which provides an efficient technique to change the weights in a feed forward network is utilized in our method. The performance of our technique is evaluated and tested on publicly available DRIVE database and we have obtained illustrative vessel segmentation results for those images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.