Abstract
AbstractTo improve the diagnosis efficiency of diseases related to retinal blood vessels, this article proposes a novel retinal blood vessels segmentation algorithm by combining the advantages of convolutional neural network (CNN) and cascade forest (CF). Firstly, we use the contrast limited adaptive histogram equalization (CLAHE) algorithm to enhance the color fundus retinal image. Secondly, we randomly select some image patches to train the CNN feature extraction module and the CF classification module. Finally, the image patches from the test image are sent to the trained model to complete the retinal blood vessel segmentation. The algorithm is verified on the DRIVE, STARE, and CHASE_DB1 datasets. The sensitivity reaches 0.8206, 0.8762, and 0.7705, the accuracy reaches 0.9531, 0.9611, and 0.9559, and the area under the ROC curve reaches 0.9770, 0.9899, and 0.9767, respectively. The comprehensive performance of our method is better than that of some state‐of‐the‐art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Imaging Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.