Abstract
This paper presents a supervised retinal vessel segmentation by incorporating vessel filtering and wavelet transform features from orientation scores (OSs), and green intensity. Through an anisotropic wavelet-type transform, a 2D image is lifted to a 3D orientation score in the Lie-group domain of positions and orientations R2⋊S1. Elongated structures are disentangled into their corresponding orientation planes and enhanced via multi-orientation vessel filtering. In addition, scale-selective OSs (in the domain of positions, orientations and scales R2⋊S1×R+) are obtained by adding a scale adaptation to the wavelet transform. Features are optimally extracted by taking maximum orientation responses at multiple scales, to represent vessels of changing calibers. Finally, we train a Random Forest classifier for vessel segmentation. Extensive validations show that our method achieves a competitive segmentation, and better vessel preservation with less false detections compared with the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.