Abstract

In recent years, deep learning technology for clinical diagnosis has progressed considerably, and the value of medical imaging continues to increase. In the past, clinicians evaluated medical images according to their individual expertise. In contrast, the application of artificial intelligence technology for automatic analysis and diagnostic assistance to support clinicians in evaluating medical information more efficiently has become an important trend. In this study, we propose a machine learning architecture designed to segment images of retinal blood vessels based on an improved U-Net neural network model. The proposed model incorporates a residual module to extract features more effectively, and includes a full-scale skip connection to combine low level details with high-level features at different scales. The results of an experimental evaluation show that the model was able to segment images of retinal vessels accurately. The proposed method also outperformed several existing models on the benchmark datasets DRIVE and ROSE, including U-Net, ResUNet, U-Net3+, ResUNet++, and CaraNet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.