Abstract

Nissl-stained retinal wholemounts were used to investigate the topographical organization of the ganglion cell layer of the koala (Phascolarctos cinereus); the visual resolution limit of this animal was subsequently estimated from retinal ganglion cell density data. Two types of cells could be differentiated on the basis of their size and staining characteristics: a subpopulation of presumed ganglion cells, consisting of medium to large cells with Nissl substance in the cytoplasm and pale uniformly staining nuclei, and a further subpopulation of small, densely staining cells. The latter group were presumed to be neuroglia and displaced amacrine cells. Iso-density contour maps were prepared from total cell counts and also counts of presumed ganglion cells; in all cases, the density of cells was greatest in the inferior retina where there was an area of peak density occurring as a poorly developed, horizontal streak that extended across the inferior retina. The inferior position of the streak in the koala contrasts with reports of the superior position of streaks in other marsupials. Peak cell densities of 2370 cells/mm2 and 1480 cells/mm2 were recorded for the total cell population and the presumed ganglion cell subpopulation, respectively. The latter value is equivalent to a visual resolution of 2.4 cycles/degree, based on sampling theory and a square packing paradigm, placing the koala close in visual performance to two other marsupials, the Australian Northern native cat and the American Virginia opossum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.