Abstract

BackgroundScotopic function is an important marker of many retinal diseases and is increasingly used as an outcome measure in clinical trials, such as those investigating gene therapy for Lebers congenital amaurosis. Scotopic visual function has traditionally been measured using an adapted perimetry system such as the Humphrey field analyser (HFA). However this system does not control for fixation errors or poor fixation stability. Here we evaluate the use of an adapted microperimeter to measure visual function at defined retinal regions under scotopic conditions.MethodsA MP-1 microperimeter (Nidek Technologies, Italy) was modified by adding a 1 log unit Neutral Density filter and a 530nm shortpass filter within the optical path of the instrument. Stray light was shielded. Fine matrix mapping perimetry was performed on five younger (<35 years) and five older (>65 years) subjects with no eye disease and good vision. All subjects were fully dark adapted before testing and pupils were dilated with 1% tropicamide. Tests was performed once on the modified MP-1 microperimeter and once using a modified HFA, in a counterbalanced order.ResultsA foveal scotopic scotoma with a sensitivity reduction of >1 log unit was found using each instrument. In addition, the MP-1 system showed the retinal location of the foveal scotoma. Mean test time was 25 minutes for the MP-1 and 32 minutes for the HFA.DiscussionA modified MP-1 microperimeter can be used to measure scotopic retinal function, creating results which are comparable to the modified Humphrey field analyser. Advantages of the MP-1 system include the ability to track the retina through testing, retinal localisation of the scotoma and a faster test time.

Highlights

  • Scotopic function is an important marker of many retinal diseases and is increasingly used as an outcome measure in clinical trials, such as those investigating gene therapy for Lebers congenital amaurosis

  • A central scotopic scotoma of at least 1 log unit was identified in all subjects on both tests

  • There was a correlation between the depth of the scotoma on the Humphrey field analyser (HFA) and MP-1 (Spearman Rho = 0.51)

Read more

Summary

Introduction

Scotopic function is an important marker of many retinal diseases and is increasingly used as an outcome measure in clinical trials, such as those investigating gene therapy for Lebers congenital amaurosis. The instrument most currently used for performing dark-adapted perimetry is a modified first-generation Humphrey Field Analyser (HFA, Carl Zeiss Meditec Inc, USA) [8,14,15,16,17,18]. This instrument relies on technology first developed in the 1980 s [19] such as 5.25” floppy discs and a ‘light-pen’ to enter data. This instrument does not measure the position of gaze, only changes in gaze from the initial calibration position

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call