Abstract

Diabetic retinopathy typically causes poor vision and blindness. A previous study revealed that a high blood glucose concentration induces glycoxidation and weakens the retinal capillaries. Nevertheless, the molecular mechanisms underlying the effects of high blood glucose induced diabetic retinopathy remain to be elucidated. In the present study, we cultured the retinal pigmented epithelial cell line ARPE-19 in mannitol-balanced 5.5, 25, and 100 mM glucose media and investigated protein level alterations. Proteomic analysis revealed significant changes in 137 protein features, of which 124 demonstrated changes in a glucose concentration dependent manner. Several proteins functionally associated with redox regulation, protein folding, or the cytoskeleton are affected by increased glucose concentrations. Additional analyses also revealed that cellular oxidative stress, including endoplasmic reticulum stress, was significantly increased after treatment with high glucose concentrations. However, the mitochondrial membrane potential and cell survival remained unchanged during treatment with high glucose concentrations. To summarize, in this study, we used a comprehensive retinal pigmented epithelial cell based proteomic approach for identifying changes in protein expression associated retinal markers induced by high glucose concentrations. Our results revealed that a high glucose condition can induce cellular oxidative stress and modulate the levels of proteins with functions in redox regulation, protein folding, and cytoskeleton regulation; however, cell viability and mitochondrial integrity are not significantly disturbed under these high glucose conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.