Abstract

This study was carried out to examine the biological activity of contraction promoters produced by dedifferentiating retinal pigment epithelial cells (RPE) and to evaluate the importance of autocrine and paracrine effects within a semi-closed environment like the vitreal cavity. RPE at different stages of dedifferentiation in culture were examined for their ability (a) to generate tractional forces in vitro, with and without serum stimulation, and (b) to produce and release contraction-stimulating proteins. Autocrine versus paracrine effects of cell-secreted promoters were tested by using RPE or human dermal fibroblasts (HDF) as target cells. The contraction-stimulating activity of the cell-secreted promoters was partially characterized and compared to the activity of defined promoters. Our study confirmed that RPE can synthesize and secrete cell-contraction-promoting factor(s) active in stimulating the development of tractional forces by RPE as well as HDF. The quantity of biological activity secreted per cell decreases with progressive dedifferentiation, yet the responsiveness of the cell to contraction promoters increases. The contraction promoter(s) synthesized by RPE is partially distinct from the promoters in serum, TGF-beta 1 and beta 2, IGF-1, ET-1 and PDGF. The contraction-promoting effects of the RPE product(s) can be completely blocked by staurosporine. De-differentiation of RPE is characterized by increasing capacity to generate tractional forces and decreasing synthetic capacity. RPE within a semi-closed system like the vitreal cavity can, theoretically, act both as promoting and active component of traction-related events (tractional retinal detachment).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.