Abstract
BackgroundOcrelizumab was found to decrease brain atrophy rate in primary progressive multiple sclerosis (PPMS), but no data are currently available on the effect of ocrelizumab on retinal layer thicknesses in the PPMS population.ObjectiveTo assess retinal layer changes in ocrelizumab-treated PPMS and test their possible application as biomarkers of therapy response.Methods36 PPMS patients, treated with ocrelizumab for at least 6 months, and 39 sex- and age-matched healthy controls (HC) were included in a blind, longitudinal study. Spectrum-domain optical coherence tomography (SD-OCT) was performed at study entry (T0) and after 6 (T6) and 12 months (T12). At month 24 (T24), patients were divided into responders (no evidence of 1-year confirmed disability progression, 1y-CDP) and non-responders (evidence of 1y-CDP).ResultsAt T24, 23/36 (64%) patients were considered responders and 13/36 (36%) non-responders. At T0, peripapillary retinal nerve fiber layer (pRNFL) thickness, macular ganglion cell–inner plexiform layer (GCIPL) and inner retinal layer (IRL) volume were significantly lower in PPMS compared to HC (p = 0.001 for all comparisons). At T6 and T12, non-responders significantly differed in the inner nuclear layer (INL) thinning rate compared to responders (p = 0.005 at both time-points).ConclusionsOcrelizumab significantly slows down INL thinning rate in PPMS responders. The longitudinal analysis of retina layer changes by means of OCT may be a promising prognostic test, and merits further investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.