Abstract

The interaction mechanism leading to laser-induced retinal alteration can be thermal or non-thermal, depending upon the wavelength of the laser radiation and the duration of the exposure. To investigate the effect of exposure duration on the interaction mechanism, retinal injury thresholds in the rhesus monkey were experimentally measured for exposure to laser radiation at wavelengths of 441.6, 457.9, 476.5, and 496.5 nm. Exposure durations were 0.1, 1, 5, 16, and 100 s; and 1/e retinal irradiance diameters were 50, 125, and 327 microm. Tissue response was observed via ophthalmoscope 1 h and 48 h post exposure. Thermal and non-thermal damage thresholds were obtained depending upon the exposure duration. These threshold data are in agreement with data previously reported in the literature for 100-s duration exposures, but differences were noted for shorter exposures. The current study yielded an estimated injury threshold for 1-s duration, 327-microm retinal irradiance diameter exposures at 441.6 nm, which is an order of magnitude higher than that previously reported. This study provides evidence that laser-induced retinal damage is primarily induced via thermal mechanisms for exposures shorter than 5 s in duration. Arguments are presented that support an amendment of the thermal hazard function, R(lambda).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.