Abstract

Adaptive optics full-filed OCT (FFOCT) with a transmissive liquid crystal spatial light modulator (LCSLM) as wavefront corrector is used without strict plane conjugation for low order aberrations corrections. We validated experimentally that FFOCT resolution is independent of aberrations and only reduce the signal level. A signal based sensorless algorithm was thus applied for wavefront distortion compensation. Image quality improvements by the wavefront sensorless control of the LCSLM were evaluated on in vitro samples. By replacing the FFOCT sample arm objective with an artificial eye used to train ophthalmologists, adaptive optics retinal imaging was achieved. In vivo experiments using a liquid lens to correct focus and astigmatism are underway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.