Abstract

Retinal homeobox ( Rx/Rax) genes are essential for the organogenesis of the vertebrate eye. These genes are dynamically expressed in a tissue-specific manner during eye development, suggesting pleiotropic roles. We use a temporally-selective gene knockdown approach to identify endogenous functions for the zebrafish rx genes, rx1 and rx2. Depletion of rx1 over the period of eye organogenesis resulted in severely reduced proliferation of retinal progenitors, the loss of expression of the transcription factor pax6, delayed retinal neurogenesis, and extensive retinal cell death. In contrast, depletion of rx2 over the same developmental time resulted in reduced expression of pax6 in the eye anlage, but only modest effects on retinal cell survival. Knockdown of rx1 specifically during photoreceptor development inhibited the expression of multiple photoreceptor-specific genes, while knockdown of rx2 over this time selectively inhibited the expression of a subset of these genes. Our findings support a function for rx2 in regulating pax6 within the optic primordia, a function for rx1 in maintaining the pluripotent, retinal progenitor cell state during retinal development, as well as selective functions for rx1 and rx2 in regulating photoreceptor differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.