Abstract

A single right retina from a black rhinoceros was whole mounted, stained and analyzed to determine the visual resolution of the rhinoceros, an animal with reputedly poor eyesight. A range of small (15-microm diameter) to large (100-microm diameter) ganglion cell types was seen across the retina. We observed two regions of high density of retinal ganglion cells at either end of a long, but thin, horizontal streak. The temporal specialization, which receives light from the anterior visual field, exhibited a ganglion cell density of approximately 2000/mm2, while the nasal specialization exhibited a density of approximately 1500/mm2. The retina exhibited a ganglion cell density bias toward the upper half, especially so, the upper temporal quadrant, indicating that the rhinoceros would be processing visual information from the visual field below the anterior horizon for the most part. Our calculations indicate that the rhinoceros has a visual resolution of 6 cycles/degree. While this resolution is one-tenth that of humans (60 cycles/deg) and less than that of the domestic cat (9 cycles/deg), it is comparable to that of the rabbit (6 cycles/deg), and exceeds that seen in a variety of other mammals including seals, dolphins, microbats, and rats. Thus, the reputation of the rhinoceros as a myopic, weakly visual animal is not supported by our observations of the retina. We calculate that the black rhinoceros could readily distinguish a 30 cm wide human at a distance of around 200 m given the appropriate visual background.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.