Abstract

Dendrites are exquisitely specialized cellular compartments that critically influence how neurons collect and process information. Retinal ganglion cell (RGC) dendrites receive synaptic inputs from bipolar and amacrine cells, thus allowing cell-to-cell communication and flow of visual information. In glaucoma, damage to RGC axons results in progressive neurodegeneration and vision loss. Recent data indicate that axonal injury triggers rapid structural alterations in RGC dendritic arbors, prior to manifest axonal loss, which lead to synaptic rearrangements and functional deficits. Here, we provide an update on recent work addressing the role of RGC dendritic degeneration in models of acute and chronic optic nerve damage as well as novel mechanisms that regulate RGC dendrite stability. A better understanding of how defects in RGC dendrites contribute to neurodegeneration in glaucoma might provide new insights into disease onset and progression, while informing the development of novel therapies to prevent vision loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.