Abstract

PurposeMicroperimetry measures differential light sensitivity (DLS) at specific retinal locations. The aim of this study is to examine the variation in DLS across the macula and the contribution to this variation of cone distribution metrics and retinal eccentricity.MethodsForty healthy eyes of 40 subjects were examined by microperimetry (MAIA) and adaptive optics imaging (rtx1). Retinal DLS was measured using the grid patterns: foveal (2°–3°), macular (3°–7°), and meridional (2°–8° on horizontal and vertical meridians). Cone density (CD), distribution regularity, and intercone distance (ICD) were calculated at the respective test loci coordinates. Linear mixed-effects regression was used to examine the association between cone distribution metrics and loci eccentricity, and retinal DLS.ResultsAn eccentricity-dependent reduction in DLS was observed on all MAIA grids, which was greatest at the foveal-parafoveal junction (2°–3°) (−0.58 dB per degree, 95% confidence interval [CI]; −0.91 to −0.24 dB, P < 0.01). Retinal DLS across the meridional grid changed significantly with each 1000 cells/deg2 change in CD (0.85 dB, 95% CI; 0.10 to 1.61 dB, P = 0.03), but not with each arcmin change in ICD (1.36 dB, 95% CI; −2.93 to 0.20 dB, P = 0.09).ConclusionsWe demonstrate significant variation in DLS across the macula. Topographical change in cone separation is an important determinant of the variation in DLS at the foveal-parafoveal junction. We caution the extrapolation of changes in DLS measurements to cone distribution because the relationship between these variables is complex.Translational RelevanceCone density is an independent determinant of DLS in the foveal-parafoveal junction in healthy eyes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.