Abstract

Retinal prostheses use periodic repetition of electrical stimuli to form artificial vision. To enhance the reliability of evoked visual percepts, repeating stimuli need to evoke consistent spiking activity in individual retinal ganglion cells (RGCs). However, it is not well known whether outer retinal degeneration alters the consistency of RGC responses. Hence, here we systematically investigated the trial-to-trial variability in network-mediated responses as a function of the degeneration level. We patch-clamp recorded spikes in ON and OFF types of alpha RGCs from r d10 mice at four different postnatal days (P15, P19, P31, and P60), representing distinct stages of degeneration. To assess the consistency of responses, we analyzed variances in spike count and timing across repeats of the same stimulus delivered multiple times. We found the trial-to-trial variability of network-mediated responses increased considerably as the disease progressed. Compared to responses taken before degeneration onset, those of degenerate retinas showed up to ~70% higher variability (Fano Factor) in spike counts (p < 0.001) and ~95% lower correlation level in spike timing (p < 0.001). These results indicate consistency weakens significantly in electrically-evoked network-mediated responses and therefore raise concerns about the ability of microelectronic retinal implants to elicit consistent visual percepts at advanced stages of retinal degeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.