Abstract
Retinal image contains vital information about the health of the sensory part of the visual system. Extracting these features is the first and most important step to analysis of retinal images for various applications of medical or human recognition. The proposed method consists of preprocessing, contrast enhancement and blood vessels extraction stages. In preprocessing, since the green channel from the coloured retinal images has the highest contrast between the subbands so the green component is selected. To uniform the brightness of image adaptive histogram equalization is used since it provides an image with a uniformed, darker background and brighter grey level of the blood vessels. Furthermore Curvelet transforms is used to enhance the contrast of an image by highlighting its edges in various scales and directions. Eventually the combination of Bothat and Tophat morpholological function followed by local thresholding is provided to classify the blood vessels. Hence the retinal blood vessels are separated from the background image. DOI: http://dx.doi.org/10.11591/ijece.v4i3.6327
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.