Abstract

In the developing mammalian visual system, retinal fibers grow through the optic chiasm, where one population crosses to the opposite side of the brain and the other does not. Evidence from labeling growing retinal axons with the carbocyanine dye Dil in mouse embryos indicates that the two subpopulations diverge at a zone along the midline of the optic chiasm. At the border of this zone, crossed fibers grow directly across, whereas uncrossed fibers turn back, developing highly complex terminations with bifurcating and wide-ranging growth cones. When one eye is removed at early stages, uncrossed fibers from the remaining eye stall at the chiasm midline. These results suggest that crossed and uncrossed retinal fibers respond differently to cues along the midline of the chiasm and that the uncrossed fibers from one eye grow along crossed fibers from the other eye, both guidance mechanisms contributing to the establishment of the bilateral pattern of visual projections in mammalian brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.