Abstract

It has often been postulated that asymmetries in performance within the visual field (VF) are not characteristic of early visual processing. Here, human retinal (naso/temporal), cortical (left/right) and superior/inferior patterns of asymmetry were explored with achromatic contrast sensitivity (CS) tasks, that probed distinct spatiotemporal frequency channels. Low spatial, high temporal frequency stimuli (illusory frequency-doubling (FD)) yielded superior and temporal field disadvantage. Independent right and nasal visual hemifield patterns of disadvantage were found when probing an intermediate spatial frequency (ISF) channel, with stationary sinusoidal gratings. These findings show that asymmetries in spatial vision are explained by independent retinal and cortical mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.