Abstract

The limited dynamic range of regular screens restricts the display of high dynamic range (HDR) images. Inspired by retinal processing mechanisms, we propose a tone mapping method to address this problem. In the retina, horizontal cells (HCs) adaptively adjust their receptive field (RF) size based on the local stimuli to regulate the visual signals absorbed by photoreceptors. Using this adaptive mechanism, the proposed method compresses the dynamic range locally in different regions, and has the capability of avoiding halo artifacts around the edges of high luminance contrast. Moreover, the proposed method introduces the center-surround antagonistic RF structure of bipolar cells (BCs) to enhance the local contrast and details. Extensive experiments show that the proposed method performs robustly well on a wide variety of images, providing competitive results against the state-of-the-art methods in terms of visual inspection, objective metrics and observer scores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call