Abstract

Pre-bond known-good-die (KGD) test is necessary to ensure stack yield for the future adoption of 3-D integrated circuits. Die wrappers that contain boundary registers at the interface between dies have been proposed as a solution for KGD test. It has been shown in the literature that if gated scan flops (GSFs) are substituted for traditional scan flops in the boundary register, then both pre-bond through-silicon-via (TSV) and pre-bond scan test can be performed. The drawback of die wrappers is that two clocked stages are added to each path that crosses a die boundary. In this paper, a bypass mode is added to GSFs to avoid the extra clock stages and retiming is used to recover the additional delay added to TSV paths by design-for-test insertion. Retiming is performed at both die and stack level, and a logic redistribution is proposed to improve the results of die-level retiming. The proposed methods are evaluated through simulations using two logic-on-logic 3-D benchmarks and one modular processor partitioned between two dies. Results show that in most cases, retiming at both the die-level and stack-level is sufficient for recovering the delay added by wrapper boundary cells in cores where all logic and dies are unfixed. Stuck-at ATPG is performed to demonstrate that wrapper insertion and retiming have little impact on pattern count. The area overhead due to wrapper insertion is shown to increase as a circuit is partitioned across an increasing number of stack layers, but the area overhead can be reduced using retiming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.