Abstract

These experiments tested hypotheses about the logic of reticulospinal and reticuloreticular controls over deep back muscles by examining descending efferent and contralateral projections of the sites within the medullary reticular formation (MRF) that evoke EMG responses in lumbar axial muscles upon electrical stimulation. In the first series of experiments, retrograde tracers were deposited at gigantocellular reticular nucleus (Gi) sites that excited the back muscles and in the contralateral lumbar spinal cord. The medullary reticular formation contralateral to the Gi stimulation/deposition site was examined for the presence of single- and double-labeled cells from these injections. Tracer depositions into Gi produced labeled cells in the contralateral Gi and Parvocellular reticular nucleus (PCRt) whereas the lumbar injections retrogradely labeled cells only in the ventral MRF, indicating that separate populations of medullary reticular cells project to the opposite MRF and the lumbar cord. In the second series of experiments the precise relationships between the location of neurons retrogradely labeled from lumbar spinal cord depositions of the retrograde trace, Fluoro-Gold (FG) and effective stimulation tracks through the MRF were examined. The results indicate that the Gi sites that are most effective for activation of the back muscles are dorsal to the location of retrogradely labeled lumbar reticulospinal cells. To verify that cell bodies and not fibers of passage were stimulated, crystals of the excitatory amino acid agonist, N-methyl-D-aspartate (NMDA) were deposited at effective stimulation sites in the Gi. NMDA decreased the ability of electrical stimulation to activate back muscles at 5 min postdeposition, indicating a local interaction of NMDA with cell bodies at the stimulation site. In the third series of experiments, electrical thresholds for EMG activation along a track through the MRF were compared to cells retrogradely labeled from FG deposited into the cervical spinal cord. In some experiments, Fast Blue was also deposited into the contralateral lumbar cord. Neurons at low threshold points on the electrode track were labeled following cervical depositions, indicating a direct projection to the cervical spinal cord. The lumbar depositions, again, labeled cells in MRF areas that were ventral to the locations of effective stimulation sites, primarily on the opposite side of the medulla. In addition, the lumbar depositions back-filled cells in the same cervical segments to which the Gi neurons project. These results suggest that one efferent projection from effective stimulation sites for back muscle activation is onto propriospinal neurons in the cervical cord, which in turn project to lumbar cord levels.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call