Abstract

Escape of large macromolecular complexes from the endoplasmic reticulum (ER), such as a viral particle or cellular aggregate, likely induces mechanical stress initiated on the luminal side of the ER membrane, which may threaten its integrity. How the ER responds to this threat remains unknown. Here we demonstrate that the cytosolic leaflet ER morphogenic protein reticulon (RTN) protects ER membrane integrity when polyomavirus SV40 escapes the ER to reach the cytosol en route to infection. SV40 coopts an intrinsic RTN function, as we also found that RTN prevents membrane damage during ER escape of a misfolded proinsulin aggregate destined for lysosomal degradation via ER-phagy. Our studies reveal that although ER membrane integrity may be threatened during ER escape of large macromolecular protein complexes, the action of RTN counters this, presumably by deploying its curvature-inducing activity to provide membrane flexibility and stability to limit mechanical stress imposed on the ER membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.