Abstract
This study focuses on the automatic decoding of inner speech using noninvasive methods, such as Electroencephalography (EEG). While inner speech has been a research topic in philosophy and psychology for half a century, recent attempts have been made to decode nonvoiced spoken words by using various brain-computer interfaces. The main shortcomings of existing work are reproducibility and the availability of data and code. In this work, we investigate various methods (using Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU), Long Short-Term Memory Networks (LSTM)) for the detection task of five vowels and six words on a publicly available EEG dataset. The main contributions of this work are (1) subject dependent vs. subject-independent approaches, (2) the effect of different preprocessing steps (Independent Component Analysis (ICA), down-sampling and filtering), and (3) word classification (where we achieve state-of-the-art performance on a publicly available dataset). Overall we achieve a performance accuracy of 35.20% and 29.21% when classifying five vowels and six words, respectively, in a publicly available dataset, using our tuned iSpeech-CNN architecture. All of our code and processed data are publicly available to ensure reproducibility. As such, this work contributes to a deeper understanding and reproducibility of experiments in the area of inner speech detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.