Abstract

BackgroundAn important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides.ResultsMining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin.ConclusionsStramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology.

Highlights

  • An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles

  • While the first step in glycolysis in most eukaryotes involves hexokinase (EC 2.7.1.1; KEGG orthology number K00844), this has been replaced by glucokinase (EC 2.7.1.2; K00845) in P. infestans and other stramenopiles with the exception of Blastocystis

  • We identified a predicted mitochondrial Glyceraldehyde phosphate dehydrogenase (GAPDH) from that species, but neither a mitochondrial Triosephosphate isomerase (TPI)-GAPDH or GAPDH was detected in the rhizarians Bigelowiella natans, Plasmodiophora brassicae, or Reticulomyxa filosa

Read more

Summary

Introduction

An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. An important feature of the eukaryotic cell that arose during evolution is metabolic compartmentalization [1]. The partitioning of reactions between the cytosol and mitochondria became possible after the latter organelle evolved through endosymbiosis [2]. Partitioning poses several potential advantages including reducing futile cycling, separating reactions that occur optimally at different pH, and increasing reaction velocities by raising the local concentration of substrates. Such benefits are balanced by the need to transport metabolites between compartments

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call