Abstract

General relativity is highly successful in explaining a wide range of gravitational phenomena including the gravitational waves emitted by binary systems and the shadows cast by supermassive black holes. From a modern perspective the theory is not fundamental though, but constitutes the lowest order term in an effective field theory description of the gravitational force. As a consequence, the gravitational dynamics should receive corrections by higher-derivative terms. This essay discusses structural aspects associated with these corrections and summarizes their imprint on static, spherically symmetric geometries. Along these lines, we critically reassess the common practice of using local field redefinitions in order to simplify the dynamics at the danger of shifting physics effects into sectors which are beyond the approximation under consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.