Abstract

Nowadays, deep neural architectures have acquired great achievements in many domains, such as image processing and natural language processing. In this paper, we hope to provide new perspectives for the future exploration of novel artificial neural architectures via reviewing the proposal and development of existing architectures. We first roughly divide the influence domain of intrinsic motivations on some common deep neural architectures into three categories: information processing, information transmission and learning strategy. Furthermore, to illustrate how deep neural architectures are motivated and developed, motivation and architecture details of three deep neural networks, namely convolutional neural network (CNN), recurrent neural network (RNN) and generative adversarial network (GAN), are introduced respectively. Moreover, the evolution of these neural architectures are also elaborated in this paper. At last, this review is concluded and several promising research topics about deep neural architectures in the future are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.