Abstract

Human attention is an interactive activity between our visual system and our brain, using both low-level visual stimulus and high-level semantic information. Previous image salient object detection (SOD) studies conduct their saliency predictions via a multitask methodology in which pixelwise saliency regression and segmentation-like saliency refinement are conducted simultaneously. However, this multitask methodology has one critical limitation: the semantic information embedded in feature backbones might be degenerated during the training process. Our visual attention is determined mainly by semantic information, which is evidenced by our tendency to pay more attention to semantically salient regions even if these regions are not the most perceptually salient at first glance. This fact clearly contradicts the widely used multitask methodology mentioned above. To address this issue, this paper divides the SOD problem into two sequential steps. First, we devise a lightweight, weakly supervised deep network to coarsely locate the semantically salient regions. Next, as a postprocessing refinement, we selectively fuse multiple off-the-shelf deep models on the semantically salient regions identified by the previous step to formulate a pixelwise saliency map. Compared with the state-of-the-art (SOTA) models that focus on learning the pixelwise saliency in single images using only perceptual clues, our method aims at investigating the object-level semantic ranks between multiple images, of which the methodology is more consistent with the human attention mechanism. Our method is simple yet effective, and it is the first attempt to consider salient object detection as mainly an object-level semantic reranking problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.