Abstract

The Fermi–Dirac and Bose–Einstein statistics are considered to be key concepts in quantum mechanics, and they are used to explain the occupancy limit of electron orbitals. We investigate the physical origin of these two statistics and uncover that the key determining factor is whether an individual electron spin is measurable or not. Microscopically, a system with individually measurable electron spins corresponds to the presence of Larmor spin precession in electron–electron interactions, while the non-measurability of individual electron spins corresponds to the absence of Larmor spin precession. Both interaction types are possible, and the favored interaction type is thermodynamically determined. The absence of Larmor spin precession is realized in coherent electron states, and coherent electrons therefore obey Bose–Einstein statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.