Abstract

Two-piece abutments consisting of customized zirconia abutment copings and prefabricated titanium bases are popular due to their biological and esthetic advantages. Glass–ceramic solder (GS) is an alternative biocompatible connective agent. This in vitro study evaluated the retentive force of GS in comparison to classical resin composite cements (RC) after artificial aging and autoclaving. Ninety specimens consisting of prefabricated titanium bases and zirconia abutment copings were fabricated. The two parts of each specimen were fixed either by RC (n = 30) or GS with a luting space of either 30 µm (n = 30) or 100 µm (n = 30). Ten specimens of each group underwent autoclaving before artificial aging (water storage, thermocycling). Twenty specimens (including the 10 autoclaved specimens) of each group were exposed to a mechanical load. The retentive force between the zirconia and titanium in all specimens was determined. A fractographic analysis was performed to analyze the fracture surfaces of the GS specimens. The RC- and GS-connected two-piece abutments showed no relevant differences, independent of the luting space. RC appears to be more vulnerable to the thermal and mechanical loads than GS. Thus, GS may be an appropriate alternative to RC for two-piece abutments, especially for patients with enhanced biocompatibility requirements.

Highlights

  • In dentistry, the fabrication of fixed partial dentures using dental implants became popular during the last decades [1]

  • There are no data describing the stability of the bond between zirconia abutment copings and prefabricated titanium bases joined with glass solder in comparison with conventional luting with resin composite cements

  • This study aims to investigate the retentive force between zirconia copings and titanium bases luted with resin composite cements or glass solder, after autoclaving, artificial aging, and mechanical loading

Read more

Summary

Introduction

The fabrication of fixed partial dentures using dental implants became popular during the last decades [1]. There are no data describing the stability of the bond between zirconia abutment copings and prefabricated titanium bases joined with glass solder in comparison with conventional luting with resin composite cements. This study aims to investigate the retentive force between zirconia copings and titanium bases luted with resin composite cements or glass solder, after autoclaving, artificial aging, and mechanical loading. The following hypotheses were tested: (1) The connection of customized zirconia abutment copings with prefabricated titanium bases using glass–ceramic solder enhances the retentive force in comparison to resin composite cement; (2) neither autoclaving nor mechanical loading affects the retentive force of resin composite cements or glass solder; and (3) an enlargement of the joining gap in specimens joined with glass solder does not increase the retentive forces

Preparation of 11 Specimens
Luting the Components with Resin Composite Cement
Joining the Components with Glass Solder
Specimen Pretreatment
Determination of the Retentive Force
Fractographic Analysis
Statistical Analysis
Results
Corresponding
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.