Abstract

Resistive switches have been fabricated using a phase-separated blend film of ferroelectric random copolymer poly(vinylidene fluoride-co-trifluoroethylene) with the organic semiconductor regio-irregular poly(3-hexylthiophene) (rir-P3HT). Spin-coated blend films have been contacted with symmetrical Ag top and Ag bottom electrodes, yielding switching diodes. The ferroelectric polarization modulates the injection barrier, yielding an injection-limited off-state and a space-charge-limited on -state. To study the effect of depolarization, an additional polyphenylenevinylene-type semiconductor layer with the highest occupied molecular orbital energy that is comparable to that of rir-P3HT has been inserted in the diode stack. When the ad-layer is the injecting contact, the current modulation ratio goes to unity. The origin is a decrease in the effective band bending at the contact with increasing ad-layer thickness. When the counter electrode at the blend interface is the injecting contact, the diode can be switched, but the on-state is only stable when an electric field that is larger than the coercive field is applied. Upon field removal, the ferroelectric depolarizes, and the current drops to that of an unpoled pristine diode. The depolarization is confirmed by capacitance-voltage and retention time measurements. To realize bistable diodes with excellent retention times, the thickness of the semiconducting wetting layer may not be at most 10 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.