Abstract

Harvested energy is intrinsically unstable and program execution will be interrupted frequently. To solve this problem, nonvolatile processor (NVP) is proposed because it can back up volatile state before the system energy is depleted. However, the backup and the recovery processes also consume non-negligible energy and delay program progress. To improve the performance of NVP, retention state has been proposed recently which can enable a system to retain the volatile data to wait for power resumption instead of saving data immediately. The objective of this paper is to forward program execution progress as much as possible by exploiting the retention state. Compared to the instant backup scheme, preliminary evaluation results report that power failures can be reduced by 81.6% and computation efficiency can be increased by 105%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.