Abstract
In many temperate ecosystems, rates of atmospheric nitrogen deposition remain high over winter despite decreased agricultural activity over this season. The extent to which this nitrogen is accessible for plant growth over the following growing season may depend strongly on uptake by plants and soil microorganisms from late fall through early spring, when the majority of aboveground plant tissue has senesced. We added Ca(15NO3)2 (5 atom %15N) at a rate of 2 g m−2 of N (corresponding to 100 mg 15N m−2) to the surface of plots in a temperate old field during either late fall, winter, spring melt or early spring. We quantified the recovery of excess 15N in the soil microbial biomass and soil extracts following spring melt and in aboveground plant tissue at the peak of the plant growing season. Nitrate additions had no significant effect on total aboveground plant biomass, relative species abundance or percent tissue nitrogen. However, mean excess 15N in aboveground plant tissue varied significantly among treatments, with values of 8.1, 2.6, 0.3 and 7.3 mg m−2 for late fall, winter, spring melt and early spring addition plots, respectively. Corresponding values of excess 15N were 3.1, 1.4 and 0.2 mg m−2 in microbial biomass, and 0.17, 0.07 and 0.03 mg m−2 in soil extracts, for late fall, winter and spring melt addition plots, respectively. Overall, these results indicate that nitrogen retention from late fall through early spring may depend highly on plant uptake in this system, and that only a small fraction of the nitrogen that accumulates in the winter snow pack may be available to plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.