Abstract

This work addresses an intensively debated question in biogeochemical research: “Are large dams affecting global nutrient cycles?” It has been postulated that the largest impoundments on the Lower Danube River, the Iron Gates Reservoirs, act as a major sink for silica (Si) in the form of settling diatoms, for phosphorus (P) and to a lesser extent for nitrogen (N). This retention of P and N in the reservoir would represent a positive contribution to the nutrient reduction in the Danube River. Based on a 9-month monitoring scheme in 2001, we quantified the nutrient and the sediment retention capacity of the Iron Gate I Reservoir. The sediment accumulation corresponded to 5% TN (total nitrogen), 12% TP (total phosphorus) and 55% TSS (total suspended solids) of the incoming loading. A mass balance revealed that more N and P are leaving the reservoir than entering via the inflow. Based on these current results, the reservoir was temporarily acting as a small nutrient source. The nutrient accumulation in the sediments of the Iron Gate I Reservoir represents only 1% of the “missing” load of 106 t N and 1.3 × 105 t P defined as the difference between the estimated nutrient export from the Danube Basin and the measured flux entering the Black Sea. This result disproves the hypothesis that the largest impoundment on the Danube River, the Iron Gates Reservoir, plays a major role in N and P elimination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.