Abstract

The fibroblast growth factors (FGFs) fall into two distinct groups with respect to their mode of release from cells. Whereas FGF1 and FGF2 lack conventional signal peptides, the remaining members have typical features of secreted proteins. However, the behavior of mouse FGF3 is anomalous, since, despite entering the secretory pathway and undergoing primary glycosylation, its release from transfected COS-1 cells is very inefficient compared with that of FGF4 and FGF5. To investigate the unusual properties of FGF3, we analyzed the processing, secretion, and intracellular localization of a series of site-directed mutants as well as chimeras produced by fusing parts of FGF3, FGF4, and FGF5. Wild-type FGF3 was shown to accumulate in an immature form in the Golgi complex, from where it is slowly released into the extracellular matrix. Removing or relocating the Asn-linked glycosylation site further impaired its release, and exchanging the signal peptide or carboxy terminus had little effect. In contrast, a chimeric protein with an amino terminus from FGF5 was efficiently secreted and biologically active in cell transformation assays. The data suggest that a structural feature of FGF3 involving the amino-terminal region and glycosylation site has a significant bearing on its passage through the Golgi complex and may regulate the secretion of the ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.