Abstract

This study examines the effect of temperature on the dynamic cholesterol coating of a C18 stationary phase and the effect of this coating on the retention mechanism. In general, an increase in temperature results in a decrease in the mass of cholesterol coated on the stationary phase. Typically, an increase in temperature from 25 °C to 55 °C results in a nearly 60% reduction in the mass of cholesterol loaded. The inclusion of temperature, along with loading solvent composition and cholesterol concentration in the loading solvent, allows for loading a targeted amount of cholesterol on the stationary phase over an order-of-magnitude range. In addition to loading studies, the retention mechanism of small non-ionizable solutes was examined on cholesterol-coated stationary phases. A van’t Hoff analysis was performed to assess retention thermodynamics, while a LSER approach was used to examine retention mechanism. With 50/50 water/organic mobile phases, the addition of cholesterol results in an increase in the entropic contribution to retention, with a decrease in the enthalpic contribution. The opposite trend is seen with 40/60 water/organic mobile phases. LSER system constants are also affected by a cholesterol coating on the stationary phase, with some changing to favor elution and others changing to favor retention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.