Abstract
Vibrotactile sensory augmentation (SA) decreases postural sway during real-time use; however, limited studies have investigated the long-term effects of training with SA. This study assessed the retention effects of long-term balance training with and without vibrotactile SA among community-dwelling healthy older adults, and explored brain-related changes due to training with SA. Sixteen participants were randomly assigned to the experimental group (EG) or control group (CG), and trained in their homes for eight weeks using smart-phone balance trainers. The EG received vibrotactile SA. Balance performance was assessed before, and one week, one month, and six months after training. Functional MRI (fMRI) was recorded before and one week after training for four participants who received vestibular stimulation. Both groups demonstrated significant improvement of SOT composite and MiniBESTest scores, and increased vestibular reliance. Only the EG maintained a minimal detectable change of 8 points in SOT scores six months post-training and greater improvements than the CG in MiniBESTest scores one month post-training. The fMRI results revealed a shift from activation in the vestibular cortex pre-training to increased activity in the brainstem and cerebellum post-training. These findings showed that additional balance improvements were maintained for up to six months post-training with vibrotactile SA for community-dwelling healthy older adults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.