Abstract

The thermodynamic characteristics of the selectivity of stationary phases in gas-liquid chromatography have been used to study the change in selectivity of a stationary phase with its increasing molecular mass within the limits of the same class of compounds. It is shown that the entropy of disssolution is the dominant thermodynamic factor of selectivity in the case of paraffinic stationary phases; a linear relatinship exists between the logarithm of relative retention of different sorbates and the reciprocal molecular mass of the stationary phase. In the case of solutions where hydrogen bonds can be formed, the enthalpy of dissolution serves as the dominant factor; in this case a linear relationship exists between the relative retention of alcohols and the reciprocal molecular mass of the stationary phase (polyethylene glycol). For the other classes of sorbates and stationary phases, the entropy as well as the enthalpy of dissolution contribute to the relative retention when the molecular phase varies within a single class of substances. The theoretical postulations have been confirmed by experimental data for paraffinic stationary phases, polyethylene glycols, and phthalic acid esters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.