Abstract

The retention behavior of large polycyclic aromatic hydrocarbons (LPAHs) (> or = 7 rings) on newly developed metalloplotoporphyrin (MProP)-silica stationary phases is examined and the results are compared to previously reported data for retention of the same solutes on commercially available phases. HPLC columns packed with FeProP-silica are shown to exhibit unique shape selectivity for LPAH retention, with the planar LPAHs always retained much longer than corresponding non-planar solutes. Solute planarity, length to breadth ratio (L/B value), and number of carbon atoms within the LPAHs are all demonstrated to contribute to the retention sequence observed. Further, the retention of LPAH solutes on FeProP-silica phases is shown to be more predictable than on other reversed-phase columns, with the elution sequence constant regardless of the mobile phase composition. Due to the extremely high planar selectivity of FeProP-silicas with respect to LPAH retention, it is envisioned that columns packed with these phases could be used in conjunction with existing commercial columns to devise Inethods for more efficient separation of complex mixtures of LPAHs in environmental and other samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call